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Overview

. . Barriers
Timeline
» Development of PHEV and EV batteries

= Start: October 1, 2018 that meet or exceed DOE and USABC
= End: Sept. 30, 2021 goals

— Cost
] . 0)

Percent complete: 50% _ Performance
— Safety
— Cobalt content
Partners

Budget = CSE, Argonne: Michael M. Thackeray, Roy Benedek,
= Total project funding: Eungje Lee, Arturo Gutierrez, Jiajun Chen, Boyu Shi,

Jinhyup Han, Venkat Srinivasan, Pallab Barai
» ES, Argonne: Devika Choudhury, Anil Mane, Jeff Elam
= APS, Argonne: Mahalingam Balasubramanian, Yang Ren
» UIC: Soroosh Sharifi-Asl, Reza Shahbazian-Yassar
= Universities — UIC, WPI, UR
= ANL industrial partners

FY19 $900K




Relevance

Data from S. Ahmed et al., J. of Power Sources 403, 56 (2018)
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* Cost and safety are still the main drivers in the development of EV batteries, Mn-rich oxides offer advantages in both

 Technoeconomic modeling (above, left) shows that Mn-rich electrodes have the potential to reach cost parity with state
of the art NMC-811 in terms of pack-level cost

* Work from this project (above, right) has demonstrated that Mn-rich electrodes can achieve similar performance to their
NMC counterparts

* Importantly, Mn-rich compositions can be made with little to no cobalt while maintaining performance




Milestones/Approach

This project seeks to make significant advancements toward realizing economically viable manganese-rich
cathode oxides by:

e Exploiting the concept of integrated structures in the form of engineered nanodomains to enhance the
stability and performance of Mn-rich oxides

* Exploring how composition dictates local structures and ordering and the associated influence on
electrochemical properties — notably, structural stability and impedance at low states of charge

* Understanding the relationships between synthesis parameters and final cathode products with respect to
co-precipitation of Min-rich oxides for practical implementation

* Design and synthesis of robust surfaces that enable low impedance, low impedance rise, high rate
capability, and long cycle-life

e Validating promising materials through scale-up and standardized testing procedures

e Strong interactions with industrial partners for information exchange and feedback

Correlated milestones aimed at the development and demonstration of economically viable Mn-rich electrodes




Technical Accomplishments

Decreasing surface area

2.8 m?/g

Increasing primary particle size (secondary patrticle size same) >
_ EZ%EC §§E§§ Mn-rich, layered-layered-spinel fired in air at 925°C, 950°C, 975°C and 1000°C
< /N * Precursors were mixed together and split before firing to ensure similar composition
é was achieved (ICP analysis in table)
 HRXRD analysis confirmed the expected patterns but suggested that samples had
different primary particle sizes, confirmed by SEM
J@..n'.d.l—.ﬁu primary p y
o0 ee 30 290 as o e0 e All samples had same the secondary particle sizes
egrees
Sample  Co Mn Ni Litm * BET analysis confirmed that the samples exhibited decreasing effective surface areas

900°C | 19324 | 53303 | 27.373 | 1.169 with Increasing processing temperatures

925°C 19.497 : 53.408 : 27.095 : 1.179

Mn-rich primary particle morphology is extremely sensitive to lithiation conditions
950°C 19.357  53.501 i 27.142 | 1.165

975°C _: 19.252 : 53.475 : 27.272 i 1.175




Technical Accomplishments
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* Main exothermic peaks for all electrodes occurs at ~295°C
* With increasing oxide annealing temperature:
* ‘Pre-peak’ shifts to lower temperature
* The percentage of overall heat released in the pre-peak increase

s These observations are opposite of the expectation that the highest surface area (lowest anneal T) would
have the lowest thermal stability.

* Total heat release decreases slightly with surface area - This is consistent with the expected surface-area trend

Sensitivity of particle morphology to synthesis conditions plays an important role in thermal stability
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Mn-rich layered-layered-spinel cathode electrodes exhibit good thermal stability (DSC) with
respect to standard, commercial NMC electrode materials
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Post mortem analyses of cathodes and anodes revealed:

* The anodes from the treated cells showed much less transition metal deposition at the graphite anodes
* The LiF-1 treated cathode, made with the WF precursor, exhibited lower charge transfer impedance compared
to the untreated baseline (not shown) as well as the LiF-2 treated cathode after cycling

Novel surface treatments show promise for lower cost
stabilization of Mn-rich surfaces
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Above — Treated/untreated samples are similar in all respects during initial cycling as shown by ASI data
collected on cycle 7, inset shows dQ/dV of cycle 4

Right — 4 HPPC cycled collected every ~20 cycles over ~80 cycles at 4.4 V vs graphite for the treated samples

This program has a strong record of developing novel surface stabilization approaches and a portfolio of
associated patents, exemplified by the data above — see, for example, A. Gutierrez et al., JES, 166, A3896 (2019).

Surface stabilization can be achieved for Mn-rich cathodes and eliminate convoluting effects on
impedance of surface damage with cycling
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* The properties of Mn-rich, cathode-electrodes depend in a significant way on particle morphology
— a property that is very sensitive to synthesis conditions, as shown by the work herein

* Detailed investigations have produced single-crystal MnCO; precursor particles with different morphologies

* Collaboration with computational modeling at ANL is ongoing to enhance our knowledge and control of co-
precipitated, Mn-rich oxides to further enhance cathode design and performance
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* Last FY this project reported the discovery of a novel LT-Li,Co, Al O,, lithiated spinel, zero-strain cathode as a new
class of materials

* This FY the procedures for larger-scale, co-precipitation synthesis of these materials were optimized

Development of a recently discovered cathode and spinel end-member for LLS materials is continuing
with good progress
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Summary

Work from this program has produced advancements towards achieving economically-viable, Mn-rich cathodes
as alternatives to Ni-rich and LNO-based oxides by:

* Developing novel, integrated structural compositions that contain ~50% or more manganese, have high first-cycle
efficiencies, and perform well when compared to NMC-counterparts in terms of energy, rate, and cost

* Developing Mn-rich oxides that show enhanced thermal properties under DSC tests when compared to standard,
commercially-available NMCs

* Developing novel surface treatments, including the application of thin films, that reveal viable strategies towards
cathode/electrolyte interface stabilization

* Revealing how subtle changes in particle morphology, influenced by synthesis parameters, can be used to enhance
the properties of Mn-rich cathode electrodes

* Developing a new class of zero-strain cathodes with implications for stabilization of bulk and surface structures

* |Implementation of standardized DOE protocols into the program for confident verification of results including
electrochemical performance, gassing, and thermal properties




Proposed Future Research

* Continue exploring the design and synthesis of new integrated structures and the influence on electrochemical
properties — notably, detailed investigations of impedance characteristics as a function of particle
structure/composition will be carried out

e Continue exploring the design and synthesis of more robust surface structures, thin films, and treatments

* Implement gassing studies using OEMS into the characterization of electrodes that utilize structurally-integrated
cathode oxides

e Continue collaborations with computational modeling to gain new insights into the synthesis of Mn-rich
precursor materials

e Scale-up and testing of promising systems in larger-format cells, including gassing and thermal studies

Any future work is subject to change depending on funding levels
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